Tree Structures for Orthogonal Transforms and Application to the Hadamard Transform
نویسنده
چکیده
Tree structures for computing orthogonal transforms are introduced. Two cases, delay trees and decimation trees, are investigated. A simple condition, namely the orthogonality of branches with a common root, is shown to be necessary and sufficient for the overall transform to be orthogonal. Main advantages are structural simplicity and a number of operations proportional to N Log 2 N. Application of the tree structures to the Walsh-Hadamard Transform (in natural, sequency and dyadic order) is presented. A single module can be multiplexed or used in parallel in order to perform all operations. Such a system is shown to be well suited for hardware implementation. Zusammenfassung. Baumstrukturen zur Berechnung orthogonaler Transformationen werden eingefiihrt. Zwei F~ille, Ver-z6gerungsb~iume und Dezimierungsb~iume, werden untersucht. Eine einfache Bedingung, nfimlich die Orthogonalit~it von Aesten mit gemeinsamer Wurzel, wird als notwendig und geniigend gefunden damit die resultierende Transformation orthogonal ist. Gr6sste Vorteile sind strukturelle Einfachheit und eine Anzahl Operationen die zu N Log2 N proportional ist. Anwendung der Baumstrukturen zur Berechnung der Walsh-Hadamard Transformation (in natiirlicher, sequentieller und dyadischer Ordnung) wird vorgestellt. AUe Operationen k6nnen mit einem enzigen Modul, dass multiplexiert oder parallel geschaltet wird, ausgef(ihrt werden. Es wird gezeigt dass ein solches System fiir eine 'hardware' Implementierung gut geeignet ist. R~sum& Des structures en arbres pour l'Evaluation de transformations orthogonales sont introduites. Deux cas, des arbres fi dElais et des arbres fi decimation, sont analyses. Une condition simple, l'orthogonalitE de branches h racine commune, est dEmontrEe comme nEcessaire et suffisante afin d'obtenir une transformEe totale orthogonale. Les avantages principaux sont la simplicitE structurelle et un nombre d'opErations proportionnel fi N Log2 N. L'application des structures en arbres au calcul de la transform6e de Walsh-Hadamard (en ordre naturel, sequentiel et dyadique) est prEsentEe. Un module unique peut 8tre multiplexE ou utilis6 en parall61e afin d'exdcuter l'ensemble des calculs. I1 est montrE qu'un tel syst~me s'adapte bien ~ une implantation 'hardware'.
منابع مشابه
Comparative Study of Discrete Orthogonal Transforms in Adaptive Signal Processing
In this paper, comparison of various orthogonal transforms in Wiener filtering is discussed. The study involves the family of discrete orthogonal transforms called Complex Hadamard Transform, which has been recently introduced by the same authors. Basic definitions, properties and transformation kernel of Complex Hadamard Transform are also shown. key words: Complex Hadamard transform, digital ...
متن کاملFamily of Unified Complex Hadamard Transforms
Novel discrete orthogonal transforms are introduced in this paper, namely the unified complex Hadamard transforms. These transforms have elements confined to four elementary complex integer numbers which are generated based on the Walsh–Hadamard transform, using a single unifying mathematical formula. The generation of higher dimension transformation matrices are discussed in detail.
متن کاملImage Coding Using Orthogonal Basis Functions
The transform properties of several orthogonal basis functions are analysed in detail in this report, and their performance compared using a set of grayscale test images, containing both natural and artificial scenes. Well-defined image quality measures are used to determine the type of images that are most suitable for compression for a given basis function. The particular transforms that we h...
متن کاملImage Compression Using Column, Row and Full Wavelet Transforms Of Walsh, Cosine, Haar, Kekre, Slant and Sine and Their Comparison with Corresponding Orthogonal Transforms
In this paper, image compression using orthogonal wavelet transforms of Walsh, Cosine, Haar, Kekre, Slant and Sine is studied. Wavelet transform of size N 2 xN 2 is generated using its corresponding orthogonal transform of size NxN. These wavelet transforms are applied on R, G, and B planes of 256x256x3 size colour images separately. In each transformed plane rows/columns are sorted in their de...
متن کاملMultilayer Hadamard Decomposition of Discrete Hartley Transforms
Discrete transforms such as the discrete Fourier transform (DFT) or the discrete Hartley transform (DHT) furnish an indispensable tool in signal processing. The successful application of transform techniques relies on the existence of the so-called fast transforms. In this paper some fast algorithms are derived which meet the lower bound on the multiplicative complexity of the DFT/DHT. The appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1983